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Supersymmetry predicts

• Lots of new particles to discover at LHC∗

• A light Higgs†

• An era of perturbative control‡

I will discuss Strategy and Tactics for computing

physical masses at two loops and beyond, and

their implementation for the Higgs scalars.

∗almost certainly
†probably
‡hopefully



Masses are key observables in SUSY. Predictions

of specific models allow/require precise calculations.

Sparticle mass corrections are known at one

loop order. (Probably not adequate for gluino

and squarks, at least.)

Higgs sector: Full 2-loop effective potential +

partial 2-loop self-energy. ∼ 1 GeV?

At LHC, ∆mh0 ∼ 100-200 MeV.

At LC, ∆mh0 ∼ 50 MeV.

Theory calculations must advance so as not to

be an obstacle to understanding.

If all other quantities held constant:
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Need both accurate measurement of top mass,

and two-loop threshold corrections to top mass.



To calculate physical masses

Evaluate self-energy = sum of 1-particle irreducible

Feynman diagrams:

Π(s) = Π(1)(s) + Π(2)(s) + . . .

The complex pole mass

spole = M2 − iΓM

is the solution of:

det[m2
tree + Π(s) − s] = 0.

The pole mass is gauge invariant at each order

in perturbation theory, can be related to kinematic

masses as measured at colliders.

There are a finite number of two-loop, two-

point Feynman diagrams. Why not just do

them once, store the results, and get it over

with?



A key feature of the problem: many distinct

particles.

• 2-loop diagrams involve many different

mass scales simultaneously.

For example:
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etc.

Large, diverse hierarchies of ratios of squared

masses.

• Method should be generic, reuseable

from start to finish.

Do calculations for scalars, fermions, vectors

in a general field theory. Then apply to

Higgs, squarks, sleptons, and quarks, gluino,

charginos, neutralinos, . . .



Strategy:

• Reduce all self-energies in general theory
to a few basis integrals

• Basis integrals contain DR′ (or MS) counter-
terms, so finite.

• Numerically evaluate basis integrals quickly
and reliably for arbitrary values of masses.

Tarasov’s basis and recurrence relations:

M

“Master integral”

S T U

Can always reduce 2-loop self-energies to a
linear combination of these, with coefficients
rational functions of:

• s = p2 = external momentum invariant

• x, y, z, . . . = internal propagator masses



Inclusion of counterterms:

S(x, y, z) =

x

y

z

−1
ε

[ x

+
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+

z ]

+ 1
2ε2

(x+ y + z)+ 1
2ε(s/2−x− y − z)

and similar for others.

These are finite as regulator removed (ε → 0).

Tarasov’s recurrence relations are complicated,

but implemented in Tarcer (Mertig+Scharf).

Only need to be evaluated once for each diagram

in a general renormalizable field theory.

108 diagrams for a general scalar self-energy.

Half are done: hep-ph/0312092.



To evaluate basis integrals:

Values at s = 0 are known analytically, in terms
of logs, dilogs.

∂

∂s
(basis integral) = (another self-energy integral)

= (linear combination of

basis integrals)

So, we have a set of coupled, first-order, linear
differential equations.

Consider the Master integral M(x, y, z, u, v):

x y

z u

v

and the basis integrals obtained from it by
removing propagator(s):

U(x, z, u, v), U(y, u, z, v), U(z, x, y, v), U(u, y, x, v),

S(x, u, v), T(x, u, v), T(u, x, v), T(v, x, u),

S(y, z, v), T(y, z, v), T(z, y, v), T(v, y, z)

Call these 13 integrals In, (n = 1, . . . ,13).



Differential equations method for basis integrals

d

ds
In =

∑
m

KnmIm + Cn

Here Knm are rational functions of s and x, y, z . . .,
and Cn are one-loop integrals. These are obtained
by using Tarasov’s recursion relations.

Solve for basis integrals In using Runge-Kutta
integration in the complex s-plane, starting from
known values at s = 0.

Re[s]

Im[s]

thresholds

Method implemented for S, T, U type integrals
by Caffo, Czyz, Laporta, Remiddi.

I have extended the method to also work for M .



Examples:

M(1,2,3,4,5) =
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Black = real part

Red = imag. part

Note sharp

behavior near

thresholds!

Takes <∼ 1 second on a modern workstation

to compute M(x, y, z, u, v) and 12 subordinate

basis integrals U , S, T for generic masses.

Takes few seconds for some (pathological) special

cases.



Advantages of the method:

• Basis integrals can be computed for any

values of all masses and s, to arbitrary accuracy.

• All necessary basis integrals are obtained

simultaneously in a single numerical computation.

• Branch cuts automatically dealt with correctly

by choosing integration contour in upper-

half complex s plane.

• Simple checks on the numerical accuracy

follow from changing choice of contour.

SPM, hep-ph/0307101

SPM and D.G. Robertson, C program, to appear.

Mathematica program available now by request.

Slooooow. NO WARRANTY.



Applications

2-loop squark pole masses, in progress.

(Almost done.)

2-loop top-quark, gluino pole masses.

(This summer?)

Partial 2-loop self-energies, pole masses for all

MSSM Higgs scalars (h0, H0, A0, H±).

All contributions to Higgs Π(s) of order:

αsy
2
t , αsy

2
b , αsytyb,

αsg
2, αsgg′, αsg

′2

y4
t , y3

t yb, y2
b y2

t , y3
b yt, y4

b , y4
τ , y2

b y2
τ

are now included.

Previous results used the effective potential

approximation, in which Π(2)(s) is approximated

by Π(2)(0) when computing the pole mass.

(That approximation relies on m2
h0

� m2
t , m2

t̃
.)



Technical notes:

• I use the supersymmetric version of dimensional

reduction, DR′. (Epsilon-scalar masses are

removed by redefinition of scalar masses.)

• I expand around minimum of the two-loop

effective potential, not the tree-level potential.

(Therefore, tadpole graphs need not be

included.)

• I use Landau gauge for electroweak gauge

bosons, general gauge for gluons.



To find Higgs scalar pole masses:

det[m2
tree + Π(s) − s1] = 0

Solutions to this eigenvalue equation are

sp = complex pole masses = M2 − iΓM.

Here Π(s) is a:

• 4×4 matrix for neutral scalars h0, H0, G0, A0.

• 2 × 2 matrix for charged scalars G±, H±.

Note: CP conservation NOT assumed anywhere.



The diagrams:

40 diagram topologies (counting fermion mass
insertions)



A Simple Limit

Let MSUSY = common squark, gluino mass,

and assume

M2
SUSY � m2

t � m2
h0

Keep only leading term in αs.

Result:

m2
h0,pole = m2

Z cos2(2β)

+
y2
t

16π2
[m2

t ∆1 + m2
h0∆

′
1 + . . .]

+
g2
3y2

t

(16π2)2
[m2

t ∆2 + m2
h0∆

′
2 + . . .]

where, with L ≡ log(M2
SUSY/m2

t ),

∆1 = 12L,

∆′
1 = 2 − 3L,

∆2 = 96L2 + 32L − 32,

∆′
2 = −12L2 + 12L + 44/3. NEW!

Note: ∆′
2 is smaller than naive estimate. Leading

log approximation is not great.



Two-loop contribution to self-energy:

Re[Πh0h0(s)] − Πh0h0(0)

Turns out to have significant cancellations, so

smaller than naive expectation:
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Diagrams with top-quark loop and strong interactions

dominates the momentum-dependent contribution

to the self-energy.

Use this to obtain the pole mass:



To obtain pole mass, full 2-loop effective potential
+ partial momentum-dependent contributions
to self-energy:

Π(2)(s) ≈ Π(2)
par(s) − Π(2)

par(0) + Π(2)(0)

The last term is obtained numerically to arbitrary
accuracy from the derivatives of the full 2-loop
effective potential (SPM, hep-ph/0206136).
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Effect on pole mass is to lower by 160 MeV,
compared to full two-loop effective potential
approximation.



I have checked that effect is similar for a variety
of MSSM models, including large tanβ.

For example, varying the top squark mixing:
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This is the difference between the pole mass calculated
with (partial) momentum-dependent contributions to the
self-energy, and the 2-loop effective potential approximation.



In the same model, 2-loop contributions to the

self-energy functions for H0, A0, H±:
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Self-energy for A0 has
√

4m2
t − s and ln(4m2

t −s) singularities
from top-quark loops with gluon exchange.

H0 and H± are continuous but non-differentiable at threholds√
s = 2mt and

√
s = mt + mb, respectively.

There is significant cancellation between αsy2
t and y4

t
contributions.

(Note: effective potential approximation is wrong by
> 100 per cent for heavy Higgs scalars!)
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Use of the 2-loop effective potential to relate VEVs
to Lagrangian parameters is important in reducing the
scale dependence.

Use of the αSy2
t and y4

t 2-loop self-energy terms makes
only a small difference compared to the 1-loop self-
energy.

(Difference is smaller than the scale dependence!)

This is because heavier Higgs are mostly Hd, don’t have
large couplings to the top (s)quarks.

Remaining scale dependence will require calculating the
rest of the two-loop diagrams, including all electroweak
effects.



A check: The Goldstone boson (mass)2 should

vanish.
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Including all two-loop effects would give m2
G0 =

m2
G± = 0, exactly.

In any given model, this can be used to estimate

rough size of two-loop errors (but not three-

loop errors!) and to choose a renormalization

scale Q.



Outlook

• Two-loop calculations for self-energies in

the MSSM are necessary and possible

• I favor a Strategy based on:

– DR′ scheme (complementary to on-shell)

– Reusable, generic calculations

– Fast computations of basis two-loop integrals

• Some 3-loop calculations (e.g. for h0) will

eventually be necessary

• Progress continues


